Skip to content Skip to navigation

Code

  • GNSS Positioning using Deep Neural Networks [code]

[Related Literature]: Ashwin V. Kanhere*, Shubh Gupta*, Akshay Shetty and Grace Gao, Improving GNSS Positioning using Neural Network-based CorrectionsProceedings of the Institute of Navigation GNSS+ conference (ION GNSS+ 2021), St. Louis, MO, Sep 2021. Accepted. [paper] [slides] [video]

[Related Literature]: Shreyas Kousik, Adam Dai and Grace Gao, Ellipsotopes: Combining Ellipsoids and Zonotopes for Reachability Analysis and Fault DetectionIEEE Transactions on Automatic Control. Submitted. [paper] 

  • Constrained Neural Network Training [code]

[Related Literature]: Long Kiu Chung*, Adam Dai*, Derek Knowles, Shreyas Kousik and Grace X. Gao, Constrained Feedforward Neural Network Training via Reachability AnalysisNRobotics: Science and Systems (RSS 2021) Robotics for People (R4P) Workshop, Jul 2021[paper]

  • An open-source parallelized direct position estimation-based GPS receiver [code]

[Related Literature]: Matthew Peretic and Grace X. Gao, Design of a Parallelized Direct Position Estimation-Based GNSS ReceiverNavigation: Journal of the Institute of Navigation, vol. 68, no. 1, pp. 21-39, Dec 2020. doi: 10.1002/navi.402[paper]

  • LiDAR odometry implementation using the Normal Distributions Transform (NDT) and measurement consensus. [code]

    [Related Literature]: Ashwin Kanhere and Grace X. Gao, LiDAR SLAM Utilizing Normal Distribution Transform and Measurement ConsensusProceedings of the Institute of Navigation GNSS+ conference (ION GNSS+ 2019), Miami, FL, Sep 2019. [paper] [slides]